Appendix 7B-1: Draft CERP Performance Measures Two kinds of performance measures have been developed for the Comprehensive Everglades Restoration Plan (CERP). The two types are 1) evaluation and 2) monitoring and assessment. The draft evaluation performance measures are presented in Table 7b-1-1. The draft monitoring and assessment performance measures are presented in Table 7b-1-2. Table 7b-1-1. Draft Evaluation Performance Measures | Number | Title | Source | Evaluation
Tool | Target | |--------|--|--|--------------------|--| | NE1 | St. Lucie Salinity
Envelope | St. Lucie Estuary/
Indian River
Lagoon CEM
Stressor | SFWMM | No more than 10 extreme high flow (>3,000 cfs) events in a 31-year period of record and no more than 18 high flow (2,000- to 3,000-cfs) events in a 31-year period of record | | NE2 | Lake Worth Salinity
Envelope | C&SF Restudy | SFWMM | Inflow to achieve 23-35 ppt salinity (0-500 cfs) | | NE3 | Caloosahatchee
Estuary Salinity
Envelope | Caloosahatchee
Estuary CEM
Stressor | SFWMM | Freshwater discharges from the C-43 canal at the S79 structure to be maintained between 300 and 2,800 cfs | | LO1 | Lake Okeechobee
Extremes in Low
Lake Stages | Lake Okeechobee
CEM Stressor | SFWMM | No events below 11 ft; no events below 12 ft for >12 months | | LO2 | Lake Okeechobee
Extremes in High
Lake Stages | Lake Okeechobee
CEM Stressor | SFWMM | No events above 17 ft; no event above 15 ft >12 months | | LO3 | Spring Recession for
Lake Okeechobee | Lake Okeechobee
CEM Stressor | SFWMM | Yearly stage decline from near 15.5 ft to near 12.5 ft, January to June, with no reversal >0.5 ft/month | | GE1 | Number and Severity
of Dry Events for the
Greater Everglades | Everglades Ridge
and Slough CEM
Stressor | SFWMM | NSM v5.0 target envelopes for Ridge and Slough indicator regions | | GE2 | Hydroperiod in the
Greater Everglades | Everglades Ridge
and Slough CEM
Stressor | SFWMM | NSM v5.0 target envelopes for each landscape type | | GE3 | Extreme High and
Low Events in the
Greater Everglades | Big Cypress, Marl
Prairie, and
Everglades Ridge
and Slough CEMs
Stressor | SFWMM | NSM v5.0 target envelopes for each landscape type | | GE4 | Seasonal Amplitude
and Interannual
Variability of Water
Levels in the Greater
Everglades | Big Cypress, Marl
Prairie, and
Everglades Ridge
and Slough CEMs
Stressor | SFWMM | NSM v5.0 targets for multiyear patterns of amplitude and variability | | Number | Title | Source | Evaluation
Tool | Target | |--------|--|---|--------------------|---| | GE5 | Overland Flow
Volume, Velocity,
Timing, and
Distribution | Everglades Total
System CEM
Stressor | SFWMM | NSM v5.0 predictions of regional flow patterns in the remaining Greater Everglades | | GE6 | Water Depth Ranges
Relative to Tree
Island Elevation | Everglades Ridge
and Slough CEMs
Stressor | SFWMM | NSM 4.5 predictions of stages consistent with tree island health | | GE7 | Total System
Phosphorous Levels | Greater
Everglades CEM
Stressor | ELM | Recover soil and water phosphorus concentrations consistent with predrainage periphyton and vegetation patterns | | GE8 | Total System
Nitrogen Levels | Greater
Everglades CEM
Stressor | ELM | Recover water nitrogen concentrations consistent with predrainage periphyton and vegetation patterns | | SE1 | Surface Water
Discharges to
Biscayne Bay | Biscayne Bay
CEM Stressor | SFWMM | Dry/wet season: Snake Creek - 93,100/66,5000 ac ft North Bay - 41,000/99,000 ac ft Miami River - 60,000/132,000 ac ft Central Bay - 83,000/161,000 ac ft South Bay - 68,000/158,000 ac ft | | SE2 | Florida Bay: Salinity
in Coastal Basins
Estimated from
Upstream Water
Stages | Florida Bay CEMs
Stressor | SFWMM | Predicted stages at Gage NP67 and Gage P33 that produce lower and upper salinity levels in coastal basins. NP67 lower/upper Joe Bay - 2.63 ft/2.04ft Little Madeira Bay - 2.82 ft/2.02 ft Terrapin Bay - 2.91 ft/1.92 ft Garfield Bight - 2.99 ft/1.97 ft P33 lower/upper North River Mouth - 7.1 ft/6.2 ft | | TS1 | Continuity: Water
Surface Elevations
Across Barriers | Total System CEM
Stressor | SFWMM | Minimize stage difference across selected barriers | | WS1 | Lake Okeechobee
Service Area -
Frequency of Water
Restrictions | Florida Statutes
373.0361(2)(a)(1) | SFWMM | Provide at least a 1-in-10 level of service as indicated three or less water years simulated with water shortages in the 31-year period | | WS2 | Frequency of Water
Restrictions for the
Lower East Coast
Service Area | Florida Statutes
373.0361(2)(a)(1) | SFWMM | Provide at least a 1-in-10 level of service as indicated three or less water years simulated with water shortages in the 31-year period | | WS3 | Potential for High
Water Levels in
South Miami-Dade
Agricultural Area | C&SF Restudy | SFWMM | Water levels should lie below target stage duration curves, especially during wet periods (evaluation team made comparison at 10% frequency of stage duration) | | Number | Title | Source | Evaluation
Tool | Target | |--------|---|-----------------------------|--------------------|--| | WS4 | Prevent Saltwater
Intrusion of the
Biscayne Aquifer:
Meet MFL Criteria for
Biscayne Aquifer | Florida Statutes
373.044 | SFWMM | Canal at Structure: Canal Stages C-51 at S-155: 7.80 ft NGVD C-16 at S-4: 7.80 ft NGVD C-15 at S-40: 7.80 ft NGVD Hillsboro Canal at G-56: 6.75 ft NGVD C-14 at S-37B: 6.50 ft NGVD C-13 at S-36: 3.80 ft NGVD North New River at G-54: 3.50 ft NGVD C-9 at S-29: 2.00 ft NGVD C-6 at S-26: 2.00 ft NGVD C-2 at S-25: 2.20 ft NGVD C-2 at S-22: 2.20 ft NGVD | | WS5 | Prevent Saltwater
Intrusion of the
Biscayne Aquifer in
South Miami-Dade
County | C&SF Restudy | SFWMM | Canal at Structure: Canal Stage
C-100A at S-123: 2.00 ft NGVD
C-1 at S-21: 2.00 ft NGVD
C-102 at S-21A: 2.00 ft NGVD
C-103 at S-20F: 2.00 ft NGVD | Table 7b-1-2. Draft Monitoring and Assessment Performance Measures | NUMBER | TITLE | SOURCE | MONITORING
MODULE AND
SECTION | RESTORATION EXPECTATIONS | |--------|--|---|--|---| | NE1 | St. Lucie Estuary
Salinity Envelope | St. Lucie Estuary/
Indian River
Lagoon CEM
Stressor | Northern Estuaries | Reestablish a salinity range
most favorable to juvenile
marine fish, shellfish,
oysters, and SAV;
estimated at 12-20 ppt for
oysters | | NE2 | Lake Worth Lagoon
Salinity Envelope | C&SF Restudy | Northern Estuaries | Inflow to achieve minimum
bottom salinity of 23 ppt
during the wet season 0.5
mile north of the C-51 canal | | NE3 | Caloosahatchee
Estuary Salinity
Envelope | Caloosahatchee
Estuary CEM
Stressor | Northern Estuaries | Reestablish a salinity range
most favorable to SAV,
oysters, clams, juvenile fish
habitat, and blue crabs | | NE4 | Loxahatchee Estuary
Salinity Envelope | C&SF Restudy (?) | Northern Estuaries
[Section to be
transferred from
other water quality] | | | NE5 | Nearshore Reef | St. Lucie Estuary/
Indian River
Lagoon CEM
Attribute | Northern Estuaries | Reduce siltation rates and salinity fluctuations in area and restore coral, fish, and macroinvertebrate community structures and biodiversity of reefs to 1970s baseline condition | | NE6 | Oysters | St. Lucie Estuary/
Indian River
Lagoon and
Caloosahatchee
Estuary CEMs
Attribute | Northern Estuaries | Increase the abundance and health of oysters in the St. Lucie and Caloosahatchee Estuaries; restore oyster beds in suitable habitat and maintain habitat function of oyster beds for fish, crabs, and birds in the Caloosahatchee Estuary | | NE7 | Estuarine
Macroinvertebrates | St. Lucie Estuary/
Indian River
Lagoon and
Caloosahatchee
Estuary CEMs
Attribute | Northern Estuaries | Increase species richness, abundance, and diversity of benthic species in the St. Lucie Estuary to that typically found in a healthy estuarine community; obtain a normal distribution, population size, and condition across optimal salinity ranges for Rangia and Polymesoda in the low salinity areas of the Caloosahatchee Estuary | | NUMBER | TITLE | SOURCE | MONITORING
MODULE AND
SECTION | RESTORATION EXPECTATIONS | |--------|---|---|--|--| | NE8 | Estuarine Fish | St. Lucie Estuary/
Indian River
Lagoon and
Caloosahatchee
Estuary CEMs
Attribute | Northern Estuaries | Restore estuarine fish assemblages with abundance, taxonomic composition, diversity, and representation of life stages characteristic of targeted salinity regimes for each estuary; decrease fish abnormalities to less than 1% in the St. Lucie Estuary; maintain or enhance SAV habitat for juvenile fish | | NE9 | Estuarine Submerged
Aquatic Vegetation | St. Lucie Estuary/ Indian River Lagoon and Caloosahatchee Estuary CEMs Attribute (Lake Worth, Loxahatchee?) | Northern Estuaries | Increase cover of SAV beds
to areas of suitable habitat;
maintain flows needed to
achieve the proper salinity
range for SAV | | NE10 | Manatee Population
Abundance,
Distribution, and
Health | Caloosahatchee
Estuary CEM
Attribute
(other estuaries?) | Northern Estuaries | Maintain and enhance current habitat and foraging areas for manatees in the Caloosahatchee Estuary and in canals to promote species recovery, especially near the Florida Power and Light warm water refugia | | NE11 | Nutrient
Concentrations (TP
and TN) | Caloosahatchee Estuary, St. Lucie Estuary, Loxahatchee Estuary and Lake Worth Lagoon Stressor | Northern Estuaries
[section to be
transferred from
other water quality] | Maintain or reduce
concentrations of TP and
TN in the estuaries at or
below state-recommended
criteria or those established
by applicable SWIM plans | | NE12 | Nutrient Loads (TP and TN) | Caloosahatchee Estuary, St. Lucie Estuary, Loxahatchee Estuary and Lake Worth Lagoon Stressor | Northern Estuaries
[section to be
transferred from
other water quality] | Maintain or reduce current
nutrient loads from inflows
to the estuaries to increase
cover of SAV and achieve
future TMDL targets
established for each
estuary | | NE13 | Algal Bloom
Frequency | Caloosahatchee Estuary, St. Lucie Estuary, Loxahatchee and Lake Worth Lagoons Stressor | Northern Estuaries
[Section to be
added] | Eliminate or reduce frequency of algal blooms and exceedances of chlorophyll <i>a</i> concentrations above 15 ppb | | NE14 | Water Clarity | Caloosahatchee Estuary, St. Lucie Estuary, Loxahatchee and Lake Worth Lagoons Attribute | Northern Estuaries
[Section to be
added] | Improve or cause no further degradation in existing water clarity to promote establishment of seagrasses and other SAV in estuaries | | NUMBER | TITLE | SOURCE | MONITORING
MODULE AND
SECTION | RESTORATION
EXPECTATIONS | |--------|--|------------------------------------|--|---| | LO1 | Lake Okeechobee
Extremes in Low Lake
Stages | Lake
Okeechobee CEM
Stressor | Lake Okeechobee
[section to be
added] | No events below 11 feet; no events below 12 feet for >12 months | | LO2 | Lake Okeechobee
Extremes in High
Lake Stages | Lake Okeechobee
CEM Stressor | Lake Okeechobee [section to be added] | No events above 17 ft; no event above 15 ft >12 months | | LO3 | Spring Recession for
Lake Okeechobee | Lake Okeechobee
CEM Stressor | Lake Okeechobee
[section to be
added] | Yearly stage decline from
near 15.5 ft to near 12.5 ft,
from January to June, with
no reversal >0.5 ft/month | | LO4 | Lake Okeechobee
Native Vegetation
Mosaic (Littoral Plant
Communities) | Lake Okeechobee
CEM Attribute | Lake Okeechobee 2.4.1 (1) | Reduction of exotic plants
and cattail; increase in
spatial extent of native
marsh and upland plants | | LO5 | Lake Okeechobee
Native Vegetation
Mosaic (SAV and
Bulrush) | Lake Okeechobee
CEM Attribute | Lake Okeechobee
2.4.1(1) for bulrush
and
2.4.1 (2) for SAV | Widespread dense beds of selective native submerged plants including Vallisneria and Potamogeton in the north, west, and south nearshore regions of the lake; expansion of bulrush community | | LO6 | Lake Okeechobee
Fish and Aquatic
Fauna (Fish and
Invertebrates) | Lake Okeechobee
CEM Attribute | Lake Okeechobee
2.4.1 (3);
see GE 11 | Increased diversity and extent of forage fish and pollutant-sensitive taxa of invertebrates | | LO7 | Lake Okeechobee
Apple Snails and
Snail Kite Population
and Nesting | Lake Okeechobee
CEM Attribute | Lake Okeechobee
2.4.1(3) for apple
snails and
2.4.1 (4) for kites | Increased density and stability of snail kite population in the littoral zone; increase the average number of Snail Kite nests from the 1998-2000 value of 2.67 to a short-term value of approximately 9 nests/year and a long-term value of over 11 nests/year; have at least one chick fledge from more than 15% of the nests | | LO8 | Lake Okeechobee
Wading Bird Feeding
Aggregations and
Nesting | Lake Okeechobee
CEM Attribute | Lake Okeechobee
2.4.1 (4) | Increase the frequency of large feeding aggregations within Lake Okeechobee from December to March for the white ibis, great egret, and great blue heron; in most years, increase the number of nests during December/January | | NUMBER | TITLE | SOURCE | MONITORING
MODULE AND
SECTION | RESTORATION EXPECTATIONS | |--------|---|------------------------------------|---|--| | LO9 | Lake Okeechobee
Fish Population
Density, Age
Structure, and
Condition | Lake Okeechobee
CEM Attribute | Lake Okeechobee
2.4.1 (4) | Improved density, age structure, and condition of black crappie, largemouth bass, and brim in the littoral and nearshore regions of the lake; reduced relative abundance of gizzard shad, threadfin shad, and blue tilapia | | LO10 | Lake Okeechobee
Alligator Populations
and Condition | Lake Okeechobee
CEM Attribute | Lake Okeechobee 2.4.1 (4) | Maintain present population density and condition of alligators in the lake | | LO11 | Lake Okeechobee
Shoreline Organic
Berm | Lake Okeechobee
CEM Attribute | Lake Okeechobee 2.4.1 (1) | Reduce the frequency of occurrence and spatial extent of a berm of dead plant material and sediments along the western lakeshore | | LO12 | Lake Okeechobee
Total Phosphorus
Concentration | Lake Okeechobee
CEM
Stressor | Lake Okeechobee 2.4.2 | Pelagic total phosphorus
long-term average below 40
ppb | | LO13 | Lake Okeechobee
Total Nitrogen:
Phosphorus Ratio | Lake Okeechobee
CEM
Stressor | Lake Okeechobee 2.4.2 | Pelagic total phosphorus
long-term average ratio
near 20:1 | | LO14 | Lake Okeechobee
Diatom:
Cyanobacteria Ratio | Lake Okeechobee
CEM Attribute | Lake Okeechobee
[section to be
added] | Pelagic long-term ratio above 1.5:1 | | LO15 | Lake Okeechobee
Algal Bloom
Frequency | Lake Okeechobee
CEM Attribute | Lake Okeechobee
[section to be
added] | Less than 5% of pelagic with >40 ppb chlorophyll a | | LO16 | Lake Okeechobee
Water Clarity | Lake Okeechobee
CEM Attribute | Lake Okeechobee
[section to be
added] | Secchi disk visible on lake
bottom in nearshore zone
from May to September to
allow adequate light for
submerged plant growth | | LO17 | Lake Okeechobee
Phosphorus Loads | Lake Okeechobee
CEM Stressor | Lake Okeechobee 2.4.2 | Long-term average
phosphorus loads into the
lake at or below 140 metric
tons/year, including inputs
from atmospheric
deposition | | NUMBER | TITLE | SOURCE | MONITORING
MODULE AND
SECTION | RESTORATION
EXPECTATIONS | |--------|--|---|--|--| | LO18 | Lake Okeechobee
Class I Water Quality
Parameters | Lake Okeechobee
CEM Stressor | Lake Okeechobee 2.4.2 | No increase in exceedances of Class I standards due to cumulative effects of CERP activities | | GE1 | Number and Severity
of Dry Events for the
Greater Everglades | Everglades Ridge
and Slough, Marl
Prairie, Mangrove
Estuary, and Big
Cypress CEM
Stressor | Greater Everglades
4.7 | NSM 4.5 (or later)
envelopes throughout the
Greater Everglades | | GE2 | Hydroperiod in the
Greater Everglades | Everglades Ridge
and Slough, Marl
Prairie, Mangrove
Estuary, and Big
Cypress CEM
Stressor | Greater Everglades
4.7 | NSM 4.5 (or later)
envelopes throughout the
Greater Everglades | | GE3 | Extreme High and
Low Events in the
Greater Everglades | Everglades Ridge
and Slough, Marl
Prairie, Mangrove
Estuary, and Big
Cypress CEMs
Stressor | Greater Everglades
4.7 | NSM 4.5 (or later)
envelopes throughout the
Greater Everglades | | GE4 | Seasonal Amplitude
and Interannual
Variability of Water
Levels in the Greater
Everglades | Everglades Ridge
and Sough, Marl
Prairie, Mangrove
Estuary, and Big
Cypress CEMs
Stressor | Greater Everglades
4.7 | NSM 4.5 (or later) multiyear
patterns of amplitude and
variability throughout the
Greater Everglades | | GE5 | Overland Flow
Volume, Velocity,
Timing and
Distribution | Everglades Total
System CEM
Stressor | Greater Everglades
4.7 | NSM 4.5 (or later) predictions of regional flow patterns in the remaining Greater Everglades | | GE6 | Total Phosphorus
Concentrations in
Water Column, Soil
and Plant Tissues and
Effects on Marsh
Community
Composition | Big Cypress,
Ridge and Slough,
and Marl Prairie
CEMs Stressor | Greater Everglades
4.3.2 for soil and
4.8 for surface
water [section
to be reviewed] | Restoration target for total phosphorus varies by geographic area, but overall target is to reduce total phosphorus concentrations in water and soil throughout the Greater Everglades system to promote recovery of periphyton communities; numerical target for TP will be concentration established by the ERC or as per the default value of 10 ppb in the EFA | | GE7 | Wetland Landscape
Patterns: Freshwater
and Estuarine
Vegetation Mosaics | Big Cypress,
Ridge and Slough,
Marl Prairie, and
Mangrove Estuary
CEMs Attribute | Greater Everglades
4.1.2 | Cease loss of pattern,
location, directionality, and
spatial extent of the Greater
Everglades communities | | GE8 | Wetland Landscape
Patterns: Ridge and
Slough Community
Sustainability | Ridge and Slough
CEM Attribute | Greater Everglades 4.1.3 | Maintain and restore processes that recover and sustain tree island and slough patterns | | NUMBER | TITLE | SOURCE | MONITORING
MODULE AND
SECTION | RESTORATION EXPECTATIONS | |--------|--|---|---|--| | GE9 | Wetland Landscape
Patterns: Tidal Creek
Sustainability | Mangrove Estuary
CEM
Attribute | Greater Everglades
4.1.4 | Maintain and restore processes that recover and sustain tidal creeks | | GE10 | Wetland Landscape
Patterns: Marl Prairie
Cape Sable Sparrow
Habitat | Marl Prairie
CEM
Attribute | Greater Everglades
4.1.5 | Recover tussock plant
community habitats
supporting Cape Sable
Sparrows | | GE11 | Wetland Trophic
Relationships:
Regional Populations
of Fishes, Crayfish,
Grass Shrimp, and
Herps | Big Cypress,
Ridge and Slough,
Marl Prairie, and
Mangrove Estuary
CEMs
Attribute | Greater Everglades
4.2.1 and 4.2.2 | Recover production and size distributions, abundance, and seasonal densities consistent with predrainage hydropatterns and salinities in freshwater and estuarine wetlands | | GE12 | Wetland Trophic
Relationships:
Wading Bird Foraging
Patterns in
Overdrained
Wetlands | Marl Prairie CEM
Attribute | Greater Everglades
4.2.3 (expanded to
all Greater
Everglades until
analysis of SRF
data reveal value of
continuing SRF) | Increase flock sizes and numbers of birds foraging in overdrained southern marl prairies | | GE13 | Wetland Trophic
Relationships:
Wading Bird Nesting
Patterns | Total System (?)
CEM Attribute
Move to Total
System section? | Greater Everglades
and Lake
Okeechobee
4.2.4 | Recover predrainage patterns of colony locations, timing and abundance, including recovery of estuarine super colonies (locations and frequency) | | GE14 | Wetland Trophic
Relationships:
American Alligator
Distribution, Size,
Nesting, and
Condition (Health) | Big Cypress,
Ridge and Slough,
Marl Prairie, and
Mangrove Estuary
CEMs Attribute | Greater Everglades
4.2.5 | Recover abundance,
distribution, and health
patterns consistent with
predrainage hydrology,
including return of
predrainage abundance to
marl prairies and mangrove
estuaries | | GE15 | Wetland Trophic
Relationships:
Periphyton Mat
Production and
Composition | Ridge and Slough,
and Marl Prairie
CEMs
Attribute | Greater Everglades
4.3.1 | Increase periphyton mat
cover, organic content,
percent noncalcareous
algae and diatom
composition, and marl
accretion | | GE16 | Wetland Trophic
Relationships:
Mangrove Forest
Production/Soil
Accretion | Mangrove Estuary
CEM
Attribute | Greater Everglades
[section to be
added] | Sustain or restore forest production and soil accretion | | GE17 | American Crocodile:
Juvenile Growth and
Survival | Mangrove Estuary
and Florida Bay
CEMs
Attribute | Greater Everglades
and Southern
Estuaries
4.4 | Increase juvenile growth
and survival in Florida Bay
and adjacent mainland
estuaries to match these
parameters at North Key
Largo and Turkey Point | | GE18 | Total Phosphorus
Loads at Inflows to
Everglades Protection
Area | Big Cypress,
Ridge and Slough,
and Marl Prairie
Stressor | Greater Everglades
[section to be
added] | Reduce TP loads from
inflow structures into the
Greater Everglades; load
reduction targets vary by
geographic area | | NUMBER | TITLE | SOURCE | MONITORING
MODULE AND
SECTION | RESTORATION EXPECTATIONS | |--------|--|--|--|---| | GE19 | Sulfate
Concentrations | Big Cypress,
Ridge and Slough,
and Marl Prairie
Stressor
From: South
Florida Ecosystem
Assessment:
Phase I/II -
Everglades
Stressor
Interactions (EPA
2001) | Greater Everglades
[section to be
added] | Maintain or reduce concentrations to 1 ppm or less in surface water throughout the Greater Everglades | | GE20 | Conductivity | Big Cypress,
Ridge and Slough,
and Marl Prairie
Stressor
Source??? | Greater Everglades
[section to be
added] | Maintain or reduce to Florida Class III standard of 1,275 umhos/cm or maintain a less than 20% increase in deseasonilized temperature-corrected conductivity at all stations | | GE21 | Coastal Salinity
Gradients | Mangrove Estuary
CEM Attribute | Greater Everglades 3.2.2 (?) | Push the salinity gradients seaward in the mangrove estuaries due to restoration of pre-drainage freshwater flow volume, timing and distribution. Maintain broad coastal gradients of salinity in the southern Everglades, due to the restoration predrainage freshwater flow, given predicted rates of sea level rise during the nest century. | | SE1 | Surface Water
Discharges to
Biscayne Bay | Biscayne Bay
CEM Stressor | Southern Estuaries | Measure freshwater flows into Biscayne Bay at all structures to determine salinity effects | | SE2 | Southern Estuaries
Salinity Pattern | Florida Bay,
Biscayne Bay, and
Mangrove Estuary
CEMs Stressor | Southern Estuaries | For Florida Bay, recover a range of conditions, including less abrupt salinity changes, reduced extremes, reduced hypersaline conditions, lower salinities; for Biscayne Bay, recover mesohaline salinity patterns in nearshore waters; for mainland mangrove estuary, recover oligohaline salinity conditions in coastal lakes and bays. | | NUMBER | TITLE | SOURCE | MONITORING
MODULE AND
SECTION | RESTORATION EXPECTATIONS | |--------|--|---|---|---| | SE3 | Submerged Aquatic
Vegetation
Distribution,
Abundance and
Community Structure | Florida Bay,
Biscayne Bay and
Mangrove Estuary
CEMs Attribute | Southern Estuaries | For Florida Bay, recover seagrass beds over much of bay; replace <i>Thalassia</i> monoculture with mixed <i>Thalassia/Halodule</i> ; for Biscayne Bay, recover <i>Halodule</i> in nearshore waters; for mangrove estuaries, increase cover and duration of <i>Chara</i> , <i>Ruppia</i> , <i>Najas</i> and <i>Utricularia</i> . | | SE4 | Juvenile Pink Shrimp
and Associated
Epifauna | Florida Bay and
Biscayne Bay
CEMs Attribute | Southern Estuaries | Increase abundance of juvenile shrimp; increase abundance and diversity of epifaunal fish and macroinvertebrates associated with submerged aquatic vegetation, including the southwest coast. | | SE5 | Shoreline Fish
Community | Florida Bay and
Biscayne Bay
CEMs Attribute | Southern Estuaries | Increase diversity and density of fish assemblages in nearshore waters. | | SE6 | Juvenile Spotted
Seatrout | Florida Bay CEM
Attribute | Southern Estuaries | Increase distribution and abundance of juvenile trout in north-central and western Florida Bay. | | SE7 | Roseate Spoonbill
Nesting Patterns in
Northeast Florida Bay | Florida Bay and
Mangrove Estuary
CEMs Attribute | Southern Estuaries | To restore the number of nesting pairs of spoonbills to the northeast area of Florida Bay. | | SE8 | Nutrient
Concentrations
(TP and TN) | Florida Bay,
Biscayne Bay and
Mangrove Estuary
CEMs
Stressor | Southern Estuaries
[section to be
reviewed] | Reduce estuarine water
nutrient concentrations so
as not to exceed current
levels and to maintain or
enhance oligotrophic
conditions | | SE9 | Nutrient Loads
(TP and TN) | Florida Bay,
Biscayne Bay, and
Mangrove Estuary
CEMS
Stressor | Southern Estuaries
(section to be
reviewed] | Reduce nutrient loads to
the estuaries so as not to
exceed current levels and
to meet future TMDL
targets established for the
estuaries | | SE10 | Algal Bloom
Frequency | Florida Bay and
Biscayne Bay
Stressor | Southern Estuaries [section to be reviewed] | Decrease or cause no net increase in frequency of algal blooms from current conditions | | SE11 | Water Clarity (PAR) | Florida Bay and
Biscayne Bay
Attribute | Southern Estuaries
[section to be
reviewed] | Improve or cause no further degradation in existing water clarity to promote establishment of seagrasses and other SAV. | | TS1 | Continuity: Water
Surface Elevations
Across Barriers | Total System CEM
Stressor | Greater Everglades | Eliminate stage differences across any remaining internal structures | | NUMBER | TITLE | SOURCE | MONITORING
MODULE AND
SECTION | RESTORATION EXPECTATIONS | |--------|--|---------------------------------------|---|--| | TS2 | Sheetflow: Volume of
Water Across
Transects in the
WCAs and ENP | Total System CEM
Stressor | Greater Everglades | Restore overland flow to similar volume and timing of flow predicted by NSM 4.5 | | TS3 | Mercury
Bioaccumulation | Total System CEM
Stressor | Greater
Everglades,
Northern Estuaries,
Lake Okeechobee,
Southern Estuaries | Decrease or cause no net increase in levels of mercury bioaccumulation in tissue of fish and/or fisheating fauna; levels should not exceed biological effect thresholds established by the state | | WS1 | Lake Okeechobee
Service Area -
Frequency of Water
Restrictions | Florida Statutes
373.0361(2)(a)(1) | Water Supply and Flood Protection | Meet demands on water supply during droughts up to a 1-in-10 year frequency | | WS2 | Frequency of Water
Restrictions for the
Lower East Coast
Service Area | Florida Statutes
373.0361(2)(a)(1) | Water Supply and Flood Protection | Meet demands on water supply during droughts up to a 1-in-10 year frequency | | WS3 | Potential for High
Water Levels in the
South Miami-Dade
Agricultural Area | C&SF Restudy | Water Supply and Flood Protection | Maintain existing flood protection in accordance with applicable law | | WS4 | Prevent Saltwater
Intrusion of Biscayne
Bay Aquifer and Meet
MFL Criteria for the
Biscayne Aquifer | Florida Statute
373.044 | Water Supply and Flood Protection | Monitor canal stages at coastal structures and monitor Biscayne aquifer levels and salinity | | WS5 | Prevent Saltwater
Intrusion of Biscayne
Bay Aquifer in South
Miami-Dade County | C&SF Restudy | Water Supply and Flood Protection | Monitor canal stages at coastal structures and monitor Biscayne aquifer levels and salinity |